
Problem Introduction 
In this paper we seek to investigate the 

effects of different breeding strategies on the 

performance of an evolutionary algorithm. 

The strategies we explore can be split into 

two different categories, those that effect 

when an agent reproduces and those that 

decide which two agents are selected to 

reproduce. The different strategies that 

define when an agent reproduces are well 

explored and defined in evolutionary biology 

whereas the strategies we use for partner 

selection are less based on natural systems. 

This means that our areas of investigation will 

be see what partner selection strategy is most 

beneficial for each “when” strategy. 

To measure the performance of the system, 

each agent has a “fitness” which increases 

whenever they collect a piece of food, of 

which a fixed number are placed in the 

environment. We define the performance of a 

system as the average fitness of all agents in 

the world. 

The Model 

We built our model on top of one provided by 

Simon Lynch, changing little except who is 

selected to breed and when it happens. The 

original model included functionality to have 

predators hunt agents but this was removed 

as it was deemed superfluous to the problem 

we wished to investigate. 

 Agents exist in a continuous world (a torus) 

and have their behaviour defined by a set of 

rules which are randomly generated for all the 

agents that are created at setup.  Rules for 

agents that are created during run time are 

generated from a mix of two other agents rule 

sets. A number of pieces of food are also 

placed in the environment, when an agent 

occupies the same area as a piece of food, the 

food is consumed and the agent’s fitness is 

increased. If an agent’s fitness equals zero, 

the agent is killed. 

Rules 
Rules are represented as having two parts, a 

sensor and an effector. When a particular 

sensor is evaluated to true, the agent 

performs the effector associated with it. 

 The rules are defined as: 

  set *sensors* 
      table:from-list 
      [["000"  "target-fwd"   ] 
       ["001"  "target-left"  ] 
       ["010"  "target-right" ] 
       ["011"  "true"         ]] 
  
  set *effectors* 
      table:from-list 
      [["00"  "move-fwd"   ] 
       ["01"  "turn-right" ] 
       ["10"  "turn-left"  ] 
       ["11"  "turn-180"   ]] 

This will create a genome of the form:  

"01011101001101110111” 

Which, when translated into a phenome 

creates: 

"[ ifelse (sensor.target-right) [ 

effector.turn-180 ]  

[ ifelse (sensor.target-left) [ 

effector.move-fwd ]  

[ ifelse (sensor.false) [ 

effector.turn-right ] 

[ effector.nop ]]]]]]"   

If no sensors evaluate to true, then no action 

is taken. 

These rules can then be perceived as good or 

bad; if an agent’s rules tell it to walk away 

from food then it will eventually starve to 

death and remove itself from the gene pool.  

If its rules tell it to go towards food it will 

increase its fitness and have a chance to pass 

this good rule to a new agent. 



Evolving 
To cross over two genomes and create a 

totally new one we iterate over the length of 

a genome and select at random which of the 

parents to take a rule digit from. The 

algorithm is biased towards whichever 

genome it took a digit from last, so the 

resultant genome will likely have sequences in 

common with its parents. The frequency at 

which the algorithm swaps between the 

parent genomes is exposed and called #xprob. 

to-report genome.cross-over [#genome-a #genome-
b #xprob] 
  let #res "" 
  let #tmp [] 
  let #n 0 
  repeat (length #genome-a) 
  [ if (roll-dice #xprob) 
    [  
      set #tmp #genome-a 
      set #genome-a #genome-b 
      set #genome-b #tmp 
    ] 
    set #res (word #res (item #n #genome-a)) 
    set #n (#n + 1) 
  ] 
  report #res 
end 

The new genome will then have a random 

chance to be exposed to mutation. This 

algorithm loops through the genome and has 

a small random chance to cause a rule digit to 

become its opposite.  

to-report genome.mutate [#genome #genes #mprob] 
  ;; genes must be a list of allowed genes, eg: 
[0 1] 
  let #res #genome 
  let #n 0 
  repeat (length #genome) 
  [ if (roll-dice #mprob) 
    [ set #res (replace-item #n #res (word                                                                                          
(one-of #genes))) 
    ] 
    set #n (#n + 1) 
  ] 
  report #res 
end 

Breeding Periods 
We explore three different types of breeding 

periods in this investigation, these are: 

Polycyclic: Polycyclic organisms reproduce 

intermittently throughout their lives. 

Semelparous: Semelparous organisms 

reproduce only once in their lifetime and 

often die shortly after. They generally have 

many offspring at once. Agents in our model 

can have up to six offspring at once. This value 

maintains a constant population of agents. 

Iteroparous: Iteroparous organisms 

reproduce in cycles (e.g. annual or seasonal) 

and commonly survive to reproduce in 

successive seasons. 

Each of these strategies was very simple to 

implement. For Polycyclic we only allowed an 

agent to reproduce if a random number 

within the range zero to a number prescribed 

by us equals zero.  

For Semelparous we allowed agents to breed 

only once by triggering a flag inside them to 

true the first time they reproduce, when this 

is triggered the agents are then killed off 

before ten more ticks have been executed. 

To implement Iterparous reproduction, we 

gave every agent a number to represent its 

season. Every time this agent is asked if it can 

breed, it mods the current tick number of the 

program with this number, if this equals zero, 

it can reproduce. 

Parent Selection 
For this paper, we investigated the effects of 

four different selection strategies. These are: 

Elitism: Two random agents with fitness 

above a certain threshold are selected as the 

parent. 

Proximity Elitism: Same as elitism but the two 

agents must be within a certain radius of one 

another. 

Random: Choses two random parents from 

the whole pool of agents. 

Ladder: The agents are sorted into ascending 

fitness and a random number between zero 



and the sum of all agent fitness. Then all 

agents are looped through, while keeping 

track of the cumulative fitness. If the random 

number falls between the current total fitness 

and the total fitness plus the fitness of the 

current agent, this agent is selected as a 

parent. This process is then repeated for the 

other parent. 

Predictions 
We predict that elitism will quickly increase 

the fitness in all the different breeding 

periods. The strategy is obviously strongly 

biased towards the better performing agents 

and completely ignores the weak agents. The 

lower we set the threshold for “elite” agents 

the slower the increase in average fitness. 

Although, this may end up with more fit 

agents in the long run as the larger pool of 

agents would eliminate any biases caused by 

agents with worse rules but better 

circumstances. 

Proximity elitism would produce similar 

results to elitism, with average fitness 

increasing over time. However, the increased 

difficulty in finding a mate coming from the 

proximity stipulation means that this increase 

should be much shallower than simple elitism. 

Random breeding should also produce an 

increase in average fitness over time. We 

predict that this increase will be the slowest 

of any of the different strategies because it 

has no biases as to the parents it picks. 

However, it will still increase over time as the 

weakest agents die off and not get a chance 

to reproduce. 

The ladder selection strategy will likely also 

increase average fitness over time. This 

increase will most likely be slower than 

elitism’s increase because of its wider 

selection of agents. The strategy has a much 

more likely chance of selecting a fit agent but 

it does not totally negate the possibility of 

picking weak agents. 

As for the breeding periods, the constant 

nature of Polycyclic, coupled with the fact 

that fit agents can reproduce multiple times 

strongly implies that it will produce a constant 

steady increase in fitness quicker than the 

other period strategies. 

For Semelparous agents we predict that it 

won’t show any string evolutionary trend as 

the fittest agents can only reproduce a limited 

amount of times. 

Finally, we predict that Iterparous agents will 

show the same evolutionary trends as 

Polycyclic agents but over a larger period of 

time as we limit not how many times they can 

reproduce, but when they can do it. 

Experiments 

Set Up 
All experiments were performed in the 

NetLogo environment that the model is built 

in. NetLogo provides several different ways to 

take information from a model and display it 

as data. The most useful of these tools is 

probably the Behaviour space, which allows 

you to create several different “Monte Carlo” 

style runs of your model and output the data 

as comma separated values. However, 

because of the complexity of out model and 

the amount of agents running at once this 

method was much too slow to test our model 

in. Instead, we ran the models manually in the 

normal NetLogo environment and recorded 

the results of each separate run.  

For each run we recorded the amount of 

agents at the end of a run, the average fitness 

of all these turtles and the fitness value of the 

fittest agent. All runs are allowed to execute 

for 2000 ticks. 



Data 
For the test we used the following data: 

 A population of 30 agents in a 20 by 

20 cell world. 

 70 pieces of food throughout the 

world. 

 Genomes are swapped during 

breeding 1 in 8 times. 

 Genomes mutate 1 in 18 times. 

 Food increases agent’s fitness by 15. 

 Moving cells decreases an agent’s 

fitness by 1. 

 Agents can see the contents of cells 

up to 6 cells away. 

 When in proximity elitism, two 

parents must be less than 5 cells 

distance from one another. 

Observations 

The deaths of agents show a 

working model. 
In many different runs of our model, it is 

clearly observable that a large uptick in 

average fitness occurs at the same time as 

many deaths. This is down to agents with zero 

fitness dying off, taking their fitness out of 

consideration for the average and only leaving 

the fit agents.  

 

Semelparous agents struggle to 

evolve. 
Whenever a Semelparous reproduces, it 

genes are taken out of the gene pool forever 

and it will die shortly after. This makes it very 

difficult for advanced genes to rise to the top 

in any of the breeding strategies. And in many 

cases we saw that the whole population 

would die long before the end of the test.  

Fitness does not increase in semelparous societies 
(Proximity Elitism) 

 The degradation of fitness in a Semelparous society 
leads to the death of the entire population. 

The deaths of the fittest agents are easy to 

locate in a graph of the fitness value of the 

fittest agent. Large drops, like the one in the 

graph below are caused by the fittest agent 

dying shortly after it has reproduced.  

Large drops in max fitness when the fittest dies after 
breeding 

0

50

100

150

200

250

1

94

18
7

28
0

37
3

46
6

55
9

65
2

74
5

83
8

93
1

10
24

11
17

AverageFitness count



Fitness has an event horizon in 

Semelparous societies. 
In semelparous societies fitness has a “point 

of no return”, a value that if it should fall 

below, the fitness of a society will only 

continue to degrade until the population dies 

out.  

 

Evaluations 
 

 

 

Polycyclic Performance 

 

Polycyclic societies performed best across all 

the different breeding strategies beating 

Semelparous and Iterparous in its average 

fitness.  

Out of the different strategies, Proximity 

elitism performed the best which is surprising 

given its stricter rules. The ladder strategy is 

the second lowest, with the elitism and 

random strategies both having similar low 

results. The low results of elitism are very 

surprising as we predicted that the strong bias 

it has towards fit agents would help it produce 

a large result. 

Semelparous Performance 

 

Semelparous had the lowest fitness values for 

each breeding strategy out of the three 

breeding periods. This is consistent with the 

predictions we made that the way it culls its 

fittest agents would make it an incredibly slow 

evolver.  

The amount evolved is very similar across all 

the different strategies explored except for 

proximity elitism in which all the agents died 

during the runs we performed. This is more in 

keeping with the predictions we made about 

proximity elitism and how its strict rules for 

breeding would make it a worse performer. 

As for the other strategies, the similarity of 

their results makes it hard to draw any 

concrete conclusions about their relative 

performance. 

Iteroparous Performance 

 

Iteroparous breeding produces much lower 

results than polycyclic, but ones that display 

the same trends between strategies. 
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Proximity elitism performs the best, then 

ladder, then similar low results for the elitism 

and random strategies. 

Max Averages 
For each run we also recorded the fitness 

value of the fittest agent that existed in the 

world. These values tell do not follow the 

same trends as the average fitness.  

 

Again polycyclic and iteroparous agents both 

perform better than semelparous by a large 

margin. However, for the ladder and elitism 

strategies, iteroparous performs better than 

polycyclic. Even with these interesting results, 

it is more correct to draw conclusions from 

the average fitness as max fitness is much too 

liable to be effected by the random 

circumstance of an agent more than the 

model behind that agent. 

Evaluations and 

Conclusions 
From our tests it is very evident that 

semelparous reproduction is detrimental to 

the evolution of an organism. But many real 

life organisms possess these traits, so how can 

they survive in reality? We conclude that 

these animals first evolved into a state that 

would allow them to easily maintain a high 

population or existed in an environment that 

changed very little before evolving the traits 

of semelparous reproduction. 

As for polycyclic and iteroparous strategies, 

both showed a constant uptick in fitness. 

Deciding if either is better than the other is 

unfair to do in this paper, as both would be 

suitable in different situations. Iteroparous for 

example would be a much better choice for 

ecosystems with a low amount of resources as 

the frequency of breeding is reduced. 

Polycyclic would perform better in 

environments where lifespans are shorter, 

mates sparser or where there are a large 

amount of predators.  

Out of the breeding strategies it is hard to 

draw strong conclusions with a small set of 

rules and only one way of measuring their 

effectiveness. However, it is obvious from our 

tests that proximity elitism performs 

extremely well. Proximity elitism constantly 

performing better than elitism initially seems 

backwards, if you want to pick one of the best 

agents then surely picking out of all the 

agents improves the chances that you will get 

a strong agent? The answer is that the strong 

agents are probably close together anyway, 

one lucky group of agents will have been 

randomly placed into an area with lots of food 

and can then use one another to immediately 

breed strong agents into their group. While 

these agents don’t have to have good rules to 

perform well, any bad rules they have will 

eventually be averaged out by breeding. 

Future work 
The model currently has only one set of rules 

and one way of judging the performance of 

those rules. To really get a sense of how the 

different breeding strategies are performing 

we would have to introduce separate sets of 

rules, the performance of which do not affect 

one another. An obvious way of doing this is 

to introduce predators and rules for avoiding 

these predators. With rules such as these it 
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would then be possible to evolve agents that 

were good at one thing but bad at others (e.g. 

good at finding food but bad at avoiding 

predators). In these situations I believe we 

would see a better evolutionary performance 

by the ladder strategy. Because the elitism 

strategy only has one way of deciding who is 

fit (who gets the most food) then it is not 

taking into account who is good at avoiding 

predators. The ladder technique does not 

ignore agents who are doing badly, it only 

picks them less. So it does not disregard 

agents who are bad at finding food but good 

at avoiding predators like an elitist strategy 

would. 

Conclusion 
The tests we have performed here are 

extreme simplifications of real world 

situations, and one could spend all day adding 

pieces of minutiae to the model. However the 

results we have gathered here do give us an 

overview of the performance of different 

breeding strategies used in nature and 

strategies used in evolutionary learning to 

maximise fitness in agents generated at run 

time.  

For polycyclic and iteroparous agents we have 

proved that they lend themselves well to 

evolution and suggested real life situations 

that they would work best in. Semelparous 

reproduction definitely raised a lot more 

questions, as its benefits were a lot less 

obvious, however we suggested that it too 

has a place in the real world but perhaps 

might be the result of evolution rather than 

something that allows it. 


