
Problem Introduction
In this paper we seek to investigate the

effects of different breeding strategies on the

performance of an evolutionary algorithm.

The strategies we explore can be split into

two different categories, those that effect

when an agent reproduces and those that

decide which two agents are selected to

reproduce. The different strategies that

define when an agent reproduces are well

explored and defined in evolutionary biology

whereas the strategies we use for partner

selection are less based on natural systems.

This means that our areas of investigation will

be see what partner selection strategy is most

beneficial for each “when” strategy.

To measure the performance of the system,

each agent has a “fitness” which increases

whenever they collect a piece of food, of

which a fixed number are placed in the

environment. We define the performance of a

system as the average fitness of all agents in

the world.

The Model

We built our model on top of one provided by

Simon Lynch, changing little except who is

selected to breed and when it happens. The

original model included functionality to have

predators hunt agents but this was removed

as it was deemed superfluous to the problem

we wished to investigate.

 Agents exist in a continuous world (a torus)

and have their behaviour defined by a set of

rules which are randomly generated for all the

agents that are created at setup. Rules for

agents that are created during run time are

generated from a mix of two other agents rule

sets. A number of pieces of food are also

placed in the environment, when an agent

occupies the same area as a piece of food, the

food is consumed and the agent’s fitness is

increased. If an agent’s fitness equals zero,

the agent is killed.

Rules
Rules are represented as having two parts, a

sensor and an effector. When a particular

sensor is evaluated to true, the agent

performs the effector associated with it.

 The rules are defined as:

 set *sensors*
 table:from-list
 [["000" "target-fwd"]
 ["001" "target-left"]
 ["010" "target-right"]
 ["011" "true"]]

 set *effectors*
 table:from-list
 [["00" "move-fwd"]
 ["01" "turn-right"]
 ["10" "turn-left"]
 ["11" "turn-180"]]

This will create a genome of the form:

"01011101001101110111”

Which, when translated into a phenome

creates:

"[ifelse (sensor.target-right) [

effector.turn-180]

[ifelse (sensor.target-left) [

effector.move-fwd]

[ifelse (sensor.false) [

effector.turn-right]

[effector.nop]]]]]]"

If no sensors evaluate to true, then no action

is taken.

These rules can then be perceived as good or

bad; if an agent’s rules tell it to walk away

from food then it will eventually starve to

death and remove itself from the gene pool.

If its rules tell it to go towards food it will

increase its fitness and have a chance to pass

this good rule to a new agent.

Evolving
To cross over two genomes and create a

totally new one we iterate over the length of

a genome and select at random which of the

parents to take a rule digit from. The

algorithm is biased towards whichever

genome it took a digit from last, so the

resultant genome will likely have sequences in

common with its parents. The frequency at

which the algorithm swaps between the

parent genomes is exposed and called #xprob.

to-report genome.cross-over [#genome-a #genome-
b #xprob]
 let #res ""
 let #tmp []
 let #n 0
 repeat (length #genome-a)
 [if (roll-dice #xprob)
 [
 set #tmp #genome-a
 set #genome-a #genome-b
 set #genome-b #tmp
]
 set #res (word #res (item #n #genome-a))
 set #n (#n + 1)
]
 report #res
end

The new genome will then have a random

chance to be exposed to mutation. This

algorithm loops through the genome and has

a small random chance to cause a rule digit to

become its opposite.

to-report genome.mutate [#genome #genes #mprob]
 ;; genes must be a list of allowed genes, eg:
[0 1]
 let #res #genome
 let #n 0
 repeat (length #genome)
 [if (roll-dice #mprob)
 [set #res (replace-item #n #res (word
(one-of #genes)))
]
 set #n (#n + 1)
]
 report #res
end

Breeding Periods
We explore three different types of breeding

periods in this investigation, these are:

Polycyclic: Polycyclic organisms reproduce

intermittently throughout their lives.

Semelparous: Semelparous organisms

reproduce only once in their lifetime and

often die shortly after. They generally have

many offspring at once. Agents in our model

can have up to six offspring at once. This value

maintains a constant population of agents.

Iteroparous: Iteroparous organisms

reproduce in cycles (e.g. annual or seasonal)

and commonly survive to reproduce in

successive seasons.

Each of these strategies was very simple to

implement. For Polycyclic we only allowed an

agent to reproduce if a random number

within the range zero to a number prescribed

by us equals zero.

For Semelparous we allowed agents to breed

only once by triggering a flag inside them to

true the first time they reproduce, when this

is triggered the agents are then killed off

before ten more ticks have been executed.

To implement Iterparous reproduction, we

gave every agent a number to represent its

season. Every time this agent is asked if it can

breed, it mods the current tick number of the

program with this number, if this equals zero,

it can reproduce.

Parent Selection
For this paper, we investigated the effects of

four different selection strategies. These are:

Elitism: Two random agents with fitness

above a certain threshold are selected as the

parent.

Proximity Elitism: Same as elitism but the two

agents must be within a certain radius of one

another.

Random: Choses two random parents from

the whole pool of agents.

Ladder: The agents are sorted into ascending

fitness and a random number between zero

and the sum of all agent fitness. Then all

agents are looped through, while keeping

track of the cumulative fitness. If the random

number falls between the current total fitness

and the total fitness plus the fitness of the

current agent, this agent is selected as a

parent. This process is then repeated for the

other parent.

Predictions
We predict that elitism will quickly increase

the fitness in all the different breeding

periods. The strategy is obviously strongly

biased towards the better performing agents

and completely ignores the weak agents. The

lower we set the threshold for “elite” agents

the slower the increase in average fitness.

Although, this may end up with more fit

agents in the long run as the larger pool of

agents would eliminate any biases caused by

agents with worse rules but better

circumstances.

Proximity elitism would produce similar

results to elitism, with average fitness

increasing over time. However, the increased

difficulty in finding a mate coming from the

proximity stipulation means that this increase

should be much shallower than simple elitism.

Random breeding should also produce an

increase in average fitness over time. We

predict that this increase will be the slowest

of any of the different strategies because it

has no biases as to the parents it picks.

However, it will still increase over time as the

weakest agents die off and not get a chance

to reproduce.

The ladder selection strategy will likely also

increase average fitness over time. This

increase will most likely be slower than

elitism’s increase because of its wider

selection of agents. The strategy has a much

more likely chance of selecting a fit agent but

it does not totally negate the possibility of

picking weak agents.

As for the breeding periods, the constant

nature of Polycyclic, coupled with the fact

that fit agents can reproduce multiple times

strongly implies that it will produce a constant

steady increase in fitness quicker than the

other period strategies.

For Semelparous agents we predict that it

won’t show any string evolutionary trend as

the fittest agents can only reproduce a limited

amount of times.

Finally, we predict that Iterparous agents will

show the same evolutionary trends as

Polycyclic agents but over a larger period of

time as we limit not how many times they can

reproduce, but when they can do it.

Experiments

Set Up
All experiments were performed in the

NetLogo environment that the model is built

in. NetLogo provides several different ways to

take information from a model and display it

as data. The most useful of these tools is

probably the Behaviour space, which allows

you to create several different “Monte Carlo”

style runs of your model and output the data

as comma separated values. However,

because of the complexity of out model and

the amount of agents running at once this

method was much too slow to test our model

in. Instead, we ran the models manually in the

normal NetLogo environment and recorded

the results of each separate run.

For each run we recorded the amount of

agents at the end of a run, the average fitness

of all these turtles and the fitness value of the

fittest agent. All runs are allowed to execute

for 2000 ticks.

Data
For the test we used the following data:

 A population of 30 agents in a 20 by

20 cell world.

 70 pieces of food throughout the

world.

 Genomes are swapped during

breeding 1 in 8 times.

 Genomes mutate 1 in 18 times.

 Food increases agent’s fitness by 15.

 Moving cells decreases an agent’s

fitness by 1.

 Agents can see the contents of cells

up to 6 cells away.

 When in proximity elitism, two

parents must be less than 5 cells

distance from one another.

Observations

The deaths of agents show a

working model.
In many different runs of our model, it is

clearly observable that a large uptick in

average fitness occurs at the same time as

many deaths. This is down to agents with zero

fitness dying off, taking their fitness out of

consideration for the average and only leaving

the fit agents.

Semelparous agents struggle to

evolve.
Whenever a Semelparous reproduces, it

genes are taken out of the gene pool forever

and it will die shortly after. This makes it very

difficult for advanced genes to rise to the top

in any of the breeding strategies. And in many

cases we saw that the whole population

would die long before the end of the test.

Fitness does not increase in semelparous societies
(Proximity Elitism)

 The degradation of fitness in a Semelparous society
leads to the death of the entire population.

The deaths of the fittest agents are easy to

locate in a graph of the fitness value of the

fittest agent. Large drops, like the one in the

graph below are caused by the fittest agent

dying shortly after it has reproduced.

Large drops in max fitness when the fittest dies after
breeding

0

50

100

150

200

250

1

94

18
7

28
0

37
3

46
6

55
9

65
2

74
5

83
8

93
1

10
24

11
17

AverageFitness count

Fitness has an event horizon in

Semelparous societies.
In semelparous societies fitness has a “point

of no return”, a value that if it should fall

below, the fitness of a society will only

continue to degrade until the population dies

out.

Evaluations

Polycyclic Performance

Polycyclic societies performed best across all

the different breeding strategies beating

Semelparous and Iterparous in its average

fitness.

Out of the different strategies, Proximity

elitism performed the best which is surprising

given its stricter rules. The ladder strategy is

the second lowest, with the elitism and

random strategies both having similar low

results. The low results of elitism are very

surprising as we predicted that the strong bias

it has towards fit agents would help it produce

a large result.

Semelparous Performance

Semelparous had the lowest fitness values for

each breeding strategy out of the three

breeding periods. This is consistent with the

predictions we made that the way it culls its

fittest agents would make it an incredibly slow

evolver.

The amount evolved is very similar across all

the different strategies explored except for

proximity elitism in which all the agents died

during the runs we performed. This is more in

keeping with the predictions we made about

proximity elitism and how its strict rules for

breeding would make it a worse performer.

As for the other strategies, the similarity of

their results makes it hard to draw any

concrete conclusions about their relative

performance.

Iteroparous Performance

Iteroparous breeding produces much lower

results than polycyclic, but ones that display

the same trends between strategies.

0

50

100

150

200

Ladder Elitism Proximity
Elitism

Random

0

50

100

150

200

Ladder Elitism Proximity
Elitism

Random

0

50

100

150

200

Ladder Elitism Proximity
Elitism

Random

Proximity elitism performs the best, then

ladder, then similar low results for the elitism

and random strategies.

Max Averages
For each run we also recorded the fitness

value of the fittest agent that existed in the

world. These values tell do not follow the

same trends as the average fitness.

Again polycyclic and iteroparous agents both

perform better than semelparous by a large

margin. However, for the ladder and elitism

strategies, iteroparous performs better than

polycyclic. Even with these interesting results,

it is more correct to draw conclusions from

the average fitness as max fitness is much too

liable to be effected by the random

circumstance of an agent more than the

model behind that agent.

Evaluations and

Conclusions
From our tests it is very evident that

semelparous reproduction is detrimental to

the evolution of an organism. But many real

life organisms possess these traits, so how can

they survive in reality? We conclude that

these animals first evolved into a state that

would allow them to easily maintain a high

population or existed in an environment that

changed very little before evolving the traits

of semelparous reproduction.

As for polycyclic and iteroparous strategies,

both showed a constant uptick in fitness.

Deciding if either is better than the other is

unfair to do in this paper, as both would be

suitable in different situations. Iteroparous for

example would be a much better choice for

ecosystems with a low amount of resources as

the frequency of breeding is reduced.

Polycyclic would perform better in

environments where lifespans are shorter,

mates sparser or where there are a large

amount of predators.

Out of the breeding strategies it is hard to

draw strong conclusions with a small set of

rules and only one way of measuring their

effectiveness. However, it is obvious from our

tests that proximity elitism performs

extremely well. Proximity elitism constantly

performing better than elitism initially seems

backwards, if you want to pick one of the best

agents then surely picking out of all the

agents improves the chances that you will get

a strong agent? The answer is that the strong

agents are probably close together anyway,

one lucky group of agents will have been

randomly placed into an area with lots of food

and can then use one another to immediately

breed strong agents into their group. While

these agents don’t have to have good rules to

perform well, any bad rules they have will

eventually be averaged out by breeding.

Future work
The model currently has only one set of rules

and one way of judging the performance of

those rules. To really get a sense of how the

different breeding strategies are performing

we would have to introduce separate sets of

rules, the performance of which do not affect

one another. An obvious way of doing this is

to introduce predators and rules for avoiding

these predators. With rules such as these it

0

100

200

300

400

500

600

Ladder Elitism Proximity
Elitism

Random

Polycyclic Semelparous Iteroparous

would then be possible to evolve agents that

were good at one thing but bad at others (e.g.

good at finding food but bad at avoiding

predators). In these situations I believe we

would see a better evolutionary performance

by the ladder strategy. Because the elitism

strategy only has one way of deciding who is

fit (who gets the most food) then it is not

taking into account who is good at avoiding

predators. The ladder technique does not

ignore agents who are doing badly, it only

picks them less. So it does not disregard

agents who are bad at finding food but good

at avoiding predators like an elitist strategy

would.

Conclusion
The tests we have performed here are

extreme simplifications of real world

situations, and one could spend all day adding

pieces of minutiae to the model. However the

results we have gathered here do give us an

overview of the performance of different

breeding strategies used in nature and

strategies used in evolutionary learning to

maximise fitness in agents generated at run

time.

For polycyclic and iteroparous agents we have

proved that they lend themselves well to

evolution and suggested real life situations

that they would work best in. Semelparous

reproduction definitely raised a lot more

questions, as its benefits were a lot less

obvious, however we suggested that it too

has a place in the real world but perhaps

might be the result of evolution rather than

something that allows it.

